skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Youn, Clifford C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper describes a geometric approach to parameter identifiability analysis in models of power systems dynamics. When a model of a power system is to be compared with measurements taken at discrete times, it can be interpreted as a mapping from parameter space into a data or prediction space. Generically, model mappings can be interpreted as manifolds with dimensionality equal to the number of structurally identifiable parameters. Empirically it is observed that model mappings often correspond to bounded manifolds. We propose a new definition of practical identifiability based the topological definition of a manifold with boundary. In many ways, our proposed definition extends the properties of structural identifiability. We construct numerical approximations to geodesics on the model manifold and use the results, combined with insights derived from the mathematical form of the equations, to identify combinations of practically identifiable and unidentifiable parameters. We give several examples of application to dynamic power systems models. 
    more » « less